Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein.

Identifieur interne : 001483 ( Main/Exploration ); précédent : 001482; suivant : 001484

Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein.

Auteurs : Tatsuhiro Sato [États-Unis] ; Akio Nakashima ; Lea Guo ; Fuyuhiko Tamanoi

Source :

RBID : pubmed:19299511

Descripteurs français

English descriptors

Abstract

Rheb G-protein plays critical roles in the TSC/Rheb/mTOR signaling pathway by activating mTORC1. The activation of mTORC1 by Rheb can be faithfully reproduced in vitro by using mTORC1 immunoprecipitated by the use of anti-raptor antibody from mammalian cells starved for nutrients. The low in vitro kinase activity against 4E-BP1 of this mTORC1 preparation is dramatically increased by the addition of recombinant Rheb. On the other hand, the addition of Rheb does not activate mTORC2 immunoprecipitated from mammalian cells by the use of anti-rictor antibody. The activation of mTORC1 is specific to Rheb, because other G-proteins such as KRas, RalA/B, and Cdc42 did not activate mTORC1. Both Rheb1 and Rheb2 activate mTORC1. In addition, the activation is dependent on the presence of bound GTP. We also find that the effector domain of Rheb is required for the mTORC1 activation. FKBP38, a recently proposed mediator of Rheb action, appears not to be involved in the Rheb-dependent activation of mTORC1 in vitro, because the preparation of mTORC1 that is devoid of FKBP38 is still activated by Rheb. The addition of Rheb results in a significant increase of binding of the substrate protein 4E-BP1 to mTORC1. PRAS40, a TOR signaling (TOS) motif-containing protein that competes with the binding of 4EBP1 to mTORC1, inhibits Rheb-induced activation of mTORC1. A preparation of mTORC1 that is devoid of raptor is not activated by Rheb. Rheb does not induce autophosphorylation of mTOR. These results suggest that Rheb induces alteration in the binding of 4E-BP1 with mTORC1 to regulate mTORC1 activation.

DOI: 10.1074/jbc.M809207200
PubMed: 19299511
PubMed Central: PMC2676008


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein.</title>
<author>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nakashima, Akio" sort="Nakashima, Akio" uniqKey="Nakashima A" first="Akio" last="Nakashima">Akio Nakashima</name>
</author>
<author>
<name sortKey="Guo, Lea" sort="Guo, Lea" uniqKey="Guo L" first="Lea" last="Guo">Lea Guo</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19299511</idno>
<idno type="pmid">19299511</idno>
<idno type="doi">10.1074/jbc.M809207200</idno>
<idno type="pmc">PMC2676008</idno>
<idno type="wicri:Area/Main/Corpus">001530</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001530</idno>
<idno type="wicri:Area/Main/Curation">001530</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001530</idno>
<idno type="wicri:Area/Main/Exploration">001530</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein.</title>
<author>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nakashima, Akio" sort="Nakashima, Akio" uniqKey="Nakashima A" first="Akio" last="Nakashima">Akio Nakashima</name>
</author>
<author>
<name sortKey="Guo, Lea" sort="Guo, Lea" uniqKey="Guo L" first="Lea" last="Guo">Lea Guo</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (genetics)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>GTP-Binding Proteins (genetics)</term>
<term>GTP-Binding Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>In Vitro Techniques (MeSH)</term>
<term>Kidney (cytology)</term>
<term>Kidney (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Monomeric GTP-Binding Proteins (genetics)</term>
<term>Monomeric GTP-Binding Proteins (metabolism)</term>
<term>Multiprotein Complexes (MeSH)</term>
<term>Neuropeptides (genetics)</term>
<term>Neuropeptides (metabolism)</term>
<term>Phosphoproteins (genetics)</term>
<term>Phosphoproteins (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Proteins (genetics)</term>
<term>Proteins (metabolism)</term>
<term>RNA, Small Interfering (pharmacology)</term>
<term>Ras Homolog Enriched in Brain Protein (MeSH)</term>
<term>Regulatory-Associated Protein of mTOR (MeSH)</term>
<term>TOR Serine-Threonine Kinases (MeSH)</term>
<term>Tacrolimus Binding Proteins (antagonists & inhibitors)</term>
<term>Tacrolimus Binding Proteins (genetics)</term>
<term>Tacrolimus Binding Proteins (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules cultivées (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Neuropeptides (génétique)</term>
<term>Neuropeptides (métabolisme)</term>
<term>Petit ARN interférent (pharmacologie)</term>
<term>Phosphoprotéines (génétique)</term>
<term>Phosphoprotéines (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéine de régulation associée à mTOR (MeSH)</term>
<term>Protéine homologue de Ras enrichie dans le cerveau (MeSH)</term>
<term>Protéines (génétique)</term>
<term>Protéines (métabolisme)</term>
<term>Protéines G (génétique)</term>
<term>Protéines G (métabolisme)</term>
<term>Protéines G monomériques (génétique)</term>
<term>Protéines G monomériques (métabolisme)</term>
<term>Protéines adaptatrices de la transduction du signal (génétique)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines de liaison au tacrolimus (antagonistes et inhibiteurs)</term>
<term>Protéines de liaison au tacrolimus (génétique)</term>
<term>Protéines de liaison au tacrolimus (métabolisme)</term>
<term>Rein (cytologie)</term>
<term>Rein (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (MeSH)</term>
<term>Techniques in vitro (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Tacrolimus Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>GTP-Binding Proteins</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Neuropeptides</term>
<term>Phosphoproteins</term>
<term>Proteins</term>
<term>Tacrolimus Binding Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>GTP-Binding Proteins</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Neuropeptides</term>
<term>Phosphoproteins</term>
<term>Proteins</term>
<term>Tacrolimus Binding Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines de liaison au tacrolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Rein</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Kidney</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Neuropeptides</term>
<term>Phosphoprotéines</term>
<term>Protéines</term>
<term>Protéines G</term>
<term>Protéines G monomériques</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de liaison au tacrolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Kidney</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Neuropeptides</term>
<term>Phosphoprotéines</term>
<term>Protéines</term>
<term>Protéines G</term>
<term>Protéines G monomériques</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de liaison au tacrolimus</term>
<term>Rein</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Petit ARN interférent</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Humans</term>
<term>Immunoprecipitation</term>
<term>In Vitro Techniques</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Multiprotein Complexes</term>
<term>Phosphorylation</term>
<term>Ras Homolog Enriched in Brain Protein</term>
<term>Regulatory-Associated Protein of mTOR</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Complexes multiprotéiques</term>
<term>Humains</term>
<term>Immunoprécipitation</term>
<term>Phosphorylation</term>
<term>Protéine de régulation associée à mTOR</term>
<term>Protéine homologue de Ras enrichie dans le cerveau</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Techniques in vitro</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rheb G-protein plays critical roles in the TSC/Rheb/mTOR signaling pathway by activating mTORC1. The activation of mTORC1 by Rheb can be faithfully reproduced in vitro by using mTORC1 immunoprecipitated by the use of anti-raptor antibody from mammalian cells starved for nutrients. The low in vitro kinase activity against 4E-BP1 of this mTORC1 preparation is dramatically increased by the addition of recombinant Rheb. On the other hand, the addition of Rheb does not activate mTORC2 immunoprecipitated from mammalian cells by the use of anti-rictor antibody. The activation of mTORC1 is specific to Rheb, because other G-proteins such as KRas, RalA/B, and Cdc42 did not activate mTORC1. Both Rheb1 and Rheb2 activate mTORC1. In addition, the activation is dependent on the presence of bound GTP. We also find that the effector domain of Rheb is required for the mTORC1 activation. FKBP38, a recently proposed mediator of Rheb action, appears not to be involved in the Rheb-dependent activation of mTORC1 in vitro, because the preparation of mTORC1 that is devoid of FKBP38 is still activated by Rheb. The addition of Rheb results in a significant increase of binding of the substrate protein 4E-BP1 to mTORC1. PRAS40, a TOR signaling (TOS) motif-containing protein that competes with the binding of 4EBP1 to mTORC1, inhibits Rheb-induced activation of mTORC1. A preparation of mTORC1 that is devoid of raptor is not activated by Rheb. Rheb does not induce autophosphorylation of mTOR. These results suggest that Rheb induces alteration in the binding of 4E-BP1 with mTORC1 to regulate mTORC1 activation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19299511</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>284</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2009</Year>
<Month>May</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein.</ArticleTitle>
<Pagination>
<MedlinePgn>12783-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M809207200</ELocationID>
<Abstract>
<AbstractText>Rheb G-protein plays critical roles in the TSC/Rheb/mTOR signaling pathway by activating mTORC1. The activation of mTORC1 by Rheb can be faithfully reproduced in vitro by using mTORC1 immunoprecipitated by the use of anti-raptor antibody from mammalian cells starved for nutrients. The low in vitro kinase activity against 4E-BP1 of this mTORC1 preparation is dramatically increased by the addition of recombinant Rheb. On the other hand, the addition of Rheb does not activate mTORC2 immunoprecipitated from mammalian cells by the use of anti-rictor antibody. The activation of mTORC1 is specific to Rheb, because other G-proteins such as KRas, RalA/B, and Cdc42 did not activate mTORC1. Both Rheb1 and Rheb2 activate mTORC1. In addition, the activation is dependent on the presence of bound GTP. We also find that the effector domain of Rheb is required for the mTORC1 activation. FKBP38, a recently proposed mediator of Rheb action, appears not to be involved in the Rheb-dependent activation of mTORC1 in vitro, because the preparation of mTORC1 that is devoid of FKBP38 is still activated by Rheb. The addition of Rheb results in a significant increase of binding of the substrate protein 4E-BP1 to mTORC1. PRAS40, a TOR signaling (TOS) motif-containing protein that competes with the binding of 4EBP1 to mTORC1, inhibits Rheb-induced activation of mTORC1. A preparation of mTORC1 that is devoid of raptor is not activated by Rheb. Rheb does not induce autophosphorylation of mTOR. These results suggest that Rheb induces alteration in the binding of 4E-BP1 with mTORC1 to regulate mTORC1 activation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sato</LastName>
<ForeName>Tatsuhiro</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nakashima</LastName>
<ForeName>Akio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Lea</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tamanoi</LastName>
<ForeName>Fuyuhiko</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA041996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA41996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>03</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C493245">CRTC2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C087000">EIF4EBP1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C471205">FKBP8 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009479">Neuropeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010750">Phosphoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490211">RHEB protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C463659">RPTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076205">Ras Homolog Enriched in Brain Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076223">Regulatory-Associated Protein of mTOR</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D019204">GTP-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020559">Monomeric GTP-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.-</RegistryNumber>
<NameOfSubstance UI="D022021">Tacrolimus Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019204" MajorTopicYN="N">GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007668" MajorTopicYN="N">Kidney</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020559" MajorTopicYN="N">Monomeric GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009479" MajorTopicYN="N">Neuropeptides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010750" MajorTopicYN="N">Phosphoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076205" MajorTopicYN="N">Ras Homolog Enriched in Brain Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076223" MajorTopicYN="N">Regulatory-Associated Protein of mTOR</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022021" MajorTopicYN="N">Tacrolimus Binding Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19299511</ArticleId>
<ArticleId IdType="pii">M809207200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M809207200</ArticleId>
<ArticleId IdType="pmc">PMC2676008</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 6;282(27):20036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17510057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 24;282(34):24514-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Nov 9;318(5852):977-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(11):e1217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18030348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18309292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2008;438:307-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18413257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Jun 1;412(2):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 19;283(38):25963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18658153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 7;283(45):30482-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18676370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Apr;11(4):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Jun;5(6):578-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12771962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1457-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Apr 14;275(15):11198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 May;20(10):3558-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10779345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 27;275(43):33836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10942774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Sep;41(6):1339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11580838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Nov 9;294(5545):1299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 16;12(8):632-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Sep 1;116(Pt 17):3601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Aug 1;17(15):1829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 5;13(15):1259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):32493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12842888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39921-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 9;313(2):429-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14684180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 9;313(2):437-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14684181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Neurol. 2003 Nov;29(5):404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14684235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2004 Apr;9(4):359-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15066126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2004 Oct;16(10):1105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Jan;40(1):27-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2981630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Jul;41(3):763-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3891097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Oct 5;377(6548):441-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7566123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1996 May 15;34(1):114-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8661031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 1996 Aug;7(4):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8768906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Oct 1;15(19):5256-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8895571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 18;272(16):10608-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9099708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 19;272(51):32547-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Aug;10(8):2531-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 Mar 1;118(Pt 5):843-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2005 Mar;137(3):423-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 29;280(17):17093-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Apr 26;15(8):702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 13;280(19):18717-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Aug 29;579(21):4763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Nov;58(4):1074-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 2;103(18):6811-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Jul;11(7):757-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 25;281(34):24293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16798736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2006 Sep;6(9):729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6347-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6361-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Mar;9(3):316-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Mar 23;25(6):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17386266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18542-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 13;282(28):20329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Guo, Lea" sort="Guo, Lea" uniqKey="Guo L" first="Lea" last="Guo">Lea Guo</name>
<name sortKey="Nakashima, Akio" sort="Nakashima, Akio" uniqKey="Nakashima A" first="Akio" last="Nakashima">Akio Nakashima</name>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001483 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001483 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19299511
   |texte=   Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19299511" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020